23 research outputs found

    QoE-centric management of advanced multimedia services

    Get PDF
    Over the last years, multimedia content has become more prominent than ever. Particularly, video streaming is responsible for more than a half of the total global bandwidth consumption on the Internet. As the original Internet was not designed to deliver such real-time, bandwidth-consuming applications, a serious challenge is posed on how to efficiently provide the best service to the users. This requires a shift in the classical approach used to deliver multimedia content, from a pure Quality of Service (QoS) to a full Quality of Experience (QoE) perspective. While QoS parameters are mainly related to low-level network aspects, the QoE reflects how the end-users perceive a particular multimedia service. As the relationship between QoS parameters and QoE is far from linear, a classical QoS-centric delivery is not able to fully optimize the quality as perceived by the users. This paper provides an overview of the main challenges this PhD aims to tackle in the field of end-to-end QoE optimization of video streaming services and, more precisely, of HTTP Adaptive Streaming (HAS) solutions, which are quickly becoming the de facto standard for video delivery over the Internet

    Braneworld setup and embedding in teleparallel gravity

    Get PDF
    We construct the setup of a five-dimensional braneworld scenario in teleparallel gravity. Both cases of Minkowski and Friedmann-Robertson-Walker branes embedded in Anti de Sitter bulk are studied and the effective 4-D action were studied. 4-dimensional local Lorentz invariance is found to be recovered in both cases. However, due to different junction conditions, the equations governing the 4-D cosmological evolution differ from general relativistic case. Using the results of Ref. [13], we consider a simple inflationary scenario in this setup. The inflation parameters are found to be modified compared to general relativistic case.Comment: 21 pages, no figure, Title Changed, Accepted for Publication in Phys. Lett.

    Braneworld Teleparallel Gravity

    Get PDF
    We study the gravity in the context of a braneworld teleparallel scenario. The geometrical setup is assumed to be Randall-Sundrum II model where a single positive tension brane is embedded in an infinite AdS bulk. We derive the equivalent of Gauss-Codacci equations in teleparallel gravity and junction conditions in this setup. Using these results we derive the induced teleparallel field equations on the brane. We show that compared to general relativity, the induced field equations in teleparallel gravity contain two extra terms arising from the extra degrees of freedom in the teleparallel Lagrangian. The term carrying the effects of the bulk to the brane is also calculated and its implications are discussed.Comment: 7 pages, no figur

    Matter stability in modified teleparallel gravity

    Get PDF
    We study the matter stability in modified teleparallel gravity or f(T)f(T) theories. We show that there is no Dolgov-Kawasaki instability in these types of modified teleparallel gravity theories. This give the f(T)f(T) theories a great advantage over their f(R)f(R) counterparts because from the stability point of view there isn't any limit on the form of functions that can be chosen.Comment: 12 pages, one eps figure, Final Revised Versio

    Look ahead to improve QoE in DASH streaming

    Full text link
    [EN] When a video is encoded with constant quality, the resulting bitstream will have variable bitrate due to the inherent nature of the video encoding process. This paper proposes a video Adaptive Bitrate Streaming (ABR) algorithm, called Look Ahead, which takes into account this bitrate variability in order to calculate, in real time, the appropriate quality level that minimizes the number of interruptions during the playback. The algorithm is based on the Dynamic Adaptive Streaming over HTTP (DASH) standard for on-demand video services. In fact, it has been implemented and integrated into ExoPlayer v2, the latest version of the library developed by Google to play DASH contents. The proposed algorithm is compared to the Müller and Segment Aware Rate Adaptation (SARA) algorithms as well as to the default ABR algorithm integrated into ExoPlayer. The comparison is carried out by using the most relevant parameters that affect the Quality of Experience (QoE) in video playback services, that is, number and duration of stalls, average quality of the video playback and number of representation switches. These parameters can be combined to define a QoE model. In this sense, this paper also proposes two new QoE models for the evaluation of ABR algorithms. One of them considers the bitrate of every segment of each representation, and the second is based on VMAF (Video Multimethod Assessment Fusion), a Video Quality Assessment (VQA) method developed by Netflix. The evaluations presented in the paper reflect: first, that Look Ahead outperforms the Müller, SARA and the ExoPlayer ABR algorithms in terms of number and duration of video playback stalls, with hardly decreasing the average video quality; and second, that the two QoE models proposed are more accurate than other similar models existing in the literature.This work is supported by the PAID-10-18 Program of the Universitat Politecnica de Valencia (Ayudas para contratos de acceso al sistema espanol de Ciencia, Tecnologia e Innovacion, en estructuras de investigacion de la Universitat Politecnica de Valencia) and by the Project 20180810 from the Universitat Politecnica de Valencia ("Tecnologias de distribucion y procesado de informacion multimedia y QoE").Belda Ortega, R.; De Fez Lava, I.; Arce Vila, P.; Guerri Cebollada, JC. (2020). Look ahead to improve QoE in DASH streaming. Multimedia Tools and Applications. 79(33-34):25143-25170. https://doi.org/10.1007/s11042-020-09214-9S25143251707933-34Akhshabi S, Narayanaswamy S, Begen AC, Dovrolis C (2012) An experimental evaluation of rate-adaptive video players over HTTP. Signal process. Image Commun 27(4):271–287. https://doi.org/10.1016/j.image.2011.10.003Android Developers webpage, ExoPlayer. Available online at: https://developer.android.com/guide/topics/media/exoplayer.html . Accessed: Jun. (2019)Bampis CG, Li Z, Bovik AC (2018) SpatioTemporal feature integration and model fusion for full reference video quality assessment. IEEE Trans on Circuits and Syst for Video Tech 29:2256–2270. https://doi.org/10.1109/TCSVT.2018.2868262Barman N, Martini MG (2019) QoE modeling for HTTP adaptive video streaming - a survey and open challenges. IEEE Access 7:30831–30859. https://doi.org/10.1109/ACCESS.2019.2901778Belda R (2013) Algoritmo de adaptación DASH: Look Ahead. Master Thesis. Universitat Politècnica de València. http://hdl.handle.net/10251/33359 .Belda R, de Fez I, Arce P, Guerri J C (2018) Look ahead: a DASH adaptation algorithm. Proc. of the IEEE Int. Symp. On broadband multimed. Syst. And broadcast., Valencia, Spain: article no. 158. https://doi.org/10.1109/BMSB.2018.8436718 .Blender Foundation webpage. Available online at: https://www.blender.org/foundation . Accessed: Jun. (2019).Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20-3:273–297. https://doi.org/10.1023/A:1022627411411DASH Industry forum webpage. Available online at: http://dashif.org . Accessed: Jun. (2019)Ghadiyaram D, Pan J, Bovik AC (2019) A subjective and objective study of stalling events in mobile streaming videos. IEEE Trans on Circuits and Syst for Video Technol 29(1):183–197. https://doi.org/10.1109/TCSVT.2017.2768542Ghent University. 4G/LTE bandwidth logs. Available online at: http://users.ugent.be/~jvdrhoof/dataset-4g . Accessed: Jun. (2019).Github webpage. A DASH segment size aware rate adaptation model for DASH. Available online at: https://github.com/pari685/AStream . Accessed: Jun. (2019)GitHub website. Dashgen, Multimedia Communications Group. Available online at: https://github.com/comm-iteam/dashgen . Accessed: Jun. (2019).van der Hooft J, Petrangeli S, Wauters T, Huysegems R, Alface PR, Bostoen T, De Turck F (2016) HTTP/2-based adaptive streaming of HEVC video over 4G/LTE networks. IEEE Commun Lett 20(1):2177–2180. https://doi.org/10.1109/LCOMM.2016.2601087Huang TY, Johari R, McKeown N, Trunnell M, Watson M (2014) A buffer-based approach to rate adaptation: evidence from a large video streaming service. Proc. of the 2014 ACM Conf. On SIGCOMM, Chicago, IL, USA: 187-198. https://doi.org/10.1145/2619239.2626296Institute of Telecommunications and Multimedia Applications website. Look Ahead Demo. Available online at: https://lookahead.iteam.upv.es . Accessed: Jun. (2019)ISO/IEC 23009–1:2014 (2014) Dynamic adaptive streaming over HTTP (DASH) - Part 1: media presentation description and segment formats.Juluri P, Tamarapalli V, Medhi D (2015) SARA: segment aware rate adaptation algorithm for dynamic adaptive streaming over HTTP. Proc. of the IEEE Int. Conf. On Commun. Workshop (ICCW), London, UK: 1765-1770. https://doi.org/10.1109/ICCW.2015.7247436 .Juluri P, Tamarapalli V, Medhi D (2016) QoE management in DASH systems using the segment aware rate adaptation algorithm. Proc. of the IEEE/IFIP Netw. Oper. And Manag. Symp. (NOMS), Istanbul, Turkey: 129-136. https://doi.org/10.1109/NOMS.2016.7502805 .Kua J, Armitage G, Branch P (2017) A survey of rate adaptation techniques for dynamic adaptive streaming over HTTP. IEEE Commun Surv & Tutor 19(3):1842–1866. https://doi.org/10.1109/COMST.2017.2685630Lee S, Youn K, Chung K (2015) Adaptive video quality control scheme to improve QoE of MPEG DASH. Proc. of IEEE Int. Conf. On Consum. Electron. (ICCE), Las Vegas, NV, USA: 126-127. https://doi.org/10.1109/ICCE.2015.7066348 .Li S, Zhang F, Ma L, Ngan K (2011) Image quality assessment by separately evaluating detail losses and additive impairments. IEEE Trans. on Multimed. 13-5:935–949. https://doi.org/10.1109/TMM.2011.2152382Liu C, Bouazizi I, Gabbouj M (2011) Rate adaptation for adaptive HTTP streaming. Proc. of the second annual ACM Conf. On multimed. Syst. (MMSys), San Jose, CA, USA: 169-174. https://doi.org/10.1145/1943552.1943575 .Medium webpage (2016) Toward a practical perceptual video quality metric. Available online at: https://medium.com/netflix-techblog/toward-a-practical-perceptual-video-quality-metric-653f208b9652 . Accessed: Jun. 2019.Mobile Video Service Performance Study (2015) HUAWEI white paper. Available online at: http://www.ctiforum.com/uploadfile/2015/0701/20150701091255294.pdf .Mok RKP, Luo X, Chan EWW, Chang RKC (2012) QDASH: a QoE-aware DASH system. Proc. of multim. Syst. Conf. (MMSys), Chapel Hill, NC, USA: 11-22. https://doi.org/10.1145/2155555.2155558Moldovan C, Hagn K, Sieber C, Kellerer W, Hoßfeld T (2017) Keep calm and don’t switch: about the relationship between switches and quality in HAS. Proc. of the Int. Teletraffic Congr. (ITC), Genoa, Italy: pp. 1-6. https://doi.org/10.23919/ITC.2017.8065802Müller C, Lederer S, Timmerer C (2012) An evaluation of dynamic adaptive streaming over HTTP in vehicular environments. Proc. of the 4th workshop on mob. Video (MoVid), Chapel Hill, NC, USA: 37-42. https://doi.org/10.1145/2151677.2151686Nguyen T, Vu T, Nguyen DV, Ngoc NP, and Thang TC (2015) QoE optimization for adaptive streaming with multiple VBR videos. Proc. of the Int. Conf. On comp., Manag. And Telecommun. (ComManTel), DaNang, Vietnam: 189-193. https://doi.org/10.1109/ComManTel.2015.7394285 .Qin Y, H. Shuai, Pattipati K R, Qian F, Sen S, Wang B, Yue C (2018) ABR Streaming of VBR-encoded videos: characterization, challenges, and solutions. Proc. of ACM CoNext 2018, Heraklion, Greece: 366–378. https://doi.org/10.1145/3281411.3281439 .Samain J, Carofiglio G, Muscariello L, Papalini M, Sardara M, Tortelli M, Rossi D (2017) Dynamic adaptive video streaming: towards a systematic comparison of ICN and TCP/IP. IEEE Trans on Multimed 19(10):2166–2181. https://doi.org/10.1109/TMM.2017.2733340Sheikh H, Bovik A (2006) Image information and visual quality. IEEE Trans on Image Process 15(2):430–444. https://doi.org/10.1109/TIP.2005.859378Shuai Y, Herfet T (2016). A buffer dynamic stabilizer for low-latency adaptive video streaming. Proc. of the Int. Conf. on Consum. Electron., Berlin: 1–5. https://doi.org/10.1109/ICCE-Berlin.2016.7684742 .Tavakoli S, Egger S, Seufert M, Schatz R, Brunnström K, García N (2016) Perceptual quality of HTTP adaptive streaming strategies: cross-experimental analysis of multi-laboratory and crowdsourced subjective studies. IEEE Journal on Select Areas in Commun 34-8:2141–2153. https://doi.org/10.1109/JSAC.2016.2577361Yarnagula H K, Juluri P, Mehr S K, Tamarapalli V, Medhi D (2019) QoE for Mobile clients with segment-aware rate adaptation algorithm (SARA) for DASH video streaming. ACM trans. On multimed. Comput., Commun., and Appl. (TOMM) 15(2):article no. 36 https://doi.org/10.1145/3311749 .Yin X, Sekar V, Sinopoli B (2014) Toward a principled framework to design dynamic adaptive streaming algorithms over HTTP. Proc. of the 13th ACM workshop on hot topics in Netw. (HotNets), Los Angeles, CA, USA: 1-7. https://doi.org/10.1145/2670518.2673877 .YouTube webpage (2019) Youtube press. Available online at: https://www.youtube.com/yt/about/press . Accessed: Jun. 2019.Youtube webpage, Google I/O ‘18: Building feature-rich media apps with ExoPlayer. Available online at: https://youtu.be/svdq1BWl4r8?t=2m . Published: May (2018)Yu L, Tillo T, Xiao J (2017) QoE-driven dynamic adaptive video streaming strategy with future information. IEEE Trans on Broadcast 63-3:523–534. https://doi.org/10.1109/TBC.2017.2687698Zhao S, Li Z, Medhi D, Lai P, Liu S (2017) Study of user QoE improvement for dynamic adaptive streaming over HTTP (MPEG-DASH). Proc. of the Int. Conf. On Comput., network. And Commun. (ICNC): multimed. Comput. And Commun., Santa Clara, CA, USA: 566-570. https://doi.org/10.1109/ICCNC.2017.7876191 .Zhou Y, Duan Y, Sun J, Guo Z (2014) Towards a simple and smooth rate adaption for VBR video in DASH. Proc. of the IEEE Vis. Commun. and Image Process. Conf, Valletta, pp 9–12. https://doi.org/10.1109/VCIP.2014.7051491Zhou C, Lin C-W, Guo Z (2016) mDASH: a Markov decision-based rate adaptation approach for dynamic HTTP streaming. IEEE Trans. on Multimed 18(4):738–751. https://doi.org/10.1109/TMM.2016.252265

    Deformed phase space in a two dimensional minisuperspace model

    Full text link
    We study the effects of noncommutativity and deformed Heisenberg algebra on the evolution of a two dimensional minisuperspace cosmological model in classical and quantum regimes. The phase space variables turn out to correspond to the scale factor of a flat FRW model with a positive cosmological constant and a dilatonic field with which the action of the model is augmented. The exact classical and quantum solutions in commutative and noncommutative cases are presented. We also obtain some approximate analytical solutions for the corresponding classical and quantum cosmology in the presence of the deformed Heisenberg relations between the phase space variables, in the limit where the minisuperspace variables are small. These results are compared with the standard commutative and noncommutative cases and similarities and differences of these solutions are discussed.Comment: 20 pages, 7 figures + 4 contourplots, to appear in CQ

    Evolution of Bow-Tie Architectures in Biology

    Get PDF
    Bow-tie or hourglass structure is a common architectural feature found in many biological systems. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signaling pathways to regulate multiple output genes. Little is known, however, about how bow-tie architectures evolve. Here, we address the evolution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a given input-output goal. We find that bow-ties spontaneously evolve when the information in the evolutionary goal can be compressed. Mathematically speaking, bow-ties evolve when the rank of the input-output matrix describing the evolutionary goal is deficient. The maximal compression possible (the rank of the goal) determines the size of the narrowest part of the network—that is the bow-tie. A further requirement is that a process is active to reduce the number of links in the network, such as product-rule mutations, otherwise a non-bow-tie solution is found in the evolutionary simulations. This offers a mechanism to understand a common architectural principle of biological systems, and a way to quantitate the effective rank of the goals under which they evolved.clos
    corecore